Drawdown EcoChallenge

The Drawdown EcoChallenge is a fun and social way to learn about and take action on the 100 climate solutions featured in the seminal work of Paul Hawken “Drawdown.”

From April 4-25, individuals and teams from around the world will take part in simple daily activities to reduce their carbon footprints and delve into the world’s most substantive solutions to global warming. At the end of the Challenge, the teams with the most points will win great prizes, including copies of Drawdown and a one-hour video session with Paul Hawken!

The EcoChallenges are broken down into these sections (with an added note of current participants):

LAND USE (1260)

ELECTRICITY GENERATION (1751)

FOOD (3156)

WOMEN AND GIRLS (1392)

BUILDINGS AND CITIES (1598)

TRANSPORT (1814)

MATERIALS (2094)

Executive Director of Drawdown, Hawken states “All of life is comprised of self-organizing systems and the Drawdown EcoChallenge is exactly that—people coming together to share, learn, support, imagine, and innovate for a better world. We are honored to be a part of this significant and brilliant initiative.”

Visit http://www.drawdown.org/ecochallenge for more information!

Professor & Mr. Trash Wheel

Based out of the waterfront partnership of Baltimore, Maryland and going by the name “Professor & Mr. Trash Wheel” these devices are vacuuming plastic from our oceans much like a Roomba for waterways. They operate exclusively on the energy they get from sunlight and water. Collecting litter and debris, keeping trash from winding up in the ocean, the device uses two trash containment booms in order to direct the waste up a conveyor belt and into the dumpster barge on the other end.

Since being installed, the trash wheels have kept over one millions pounds of litter out of the Atlantic ocean!

Thanks again to @mchllsong for the share!

To visit a link to the YouTube video from Mashable go here;

Hot Solar Cell

As posted in the MIT Technology Review earlier this year, we are developing a new “hot solar cell” technology.
By converting heat to focused beams of light, a new solar device could create cheap and continuous power.

Solar panels cover a growing number of rooftops, but even decades after they were first developed, the slabs of silicon remain bulky, expensive, and inefficient. Fundamental limitations prevent these conventional photovoltaics from absorbing more than a fraction of the energy in sunlight.

But a team of MIT scientists has built a different sort of solar energy device that uses inventive engineering and advances in materials science to capture far more of the sun’s energy. The trick is to first turn sunlight into heat and then convert it back into light, but now focused within the spectrum that solar cells can use. While various researchers have been working for years on so-called solar thermophotovoltaics, the MIT device is the first one to absorb more energy than its photovoltaic cell alone, demonstrating that the approach could dramatically increase efficiency.

Visit the full source article here!

RanMarine WasteShark

Founded by Richard Hardiman, Ranmarine Technology uses WasteShark — 24-hour on-the-water drones. The solar-powered drones collect detritus, marine waste and chemical substances from ports and canals.

Founded in 2015 in South Africa, the company was later re-incorporated in the Netherlands at the start of last year as RanMarine Technology BV.

Hardiman is based in Rotterdam. He moved there after being selected for PortXL Rotterdam’s maritime accelerator (portxl.org) in February last year. The startup was one of 12 companies selected from 1000 startups worldwide.

In July last year the startup began a pilot with the Port of Rotterdam to test both the use of autonomous surface vessels in their waters and how the product actually works in “high trafficked waters”. The pilot was successfully completed last month.

There are currently 3 different types of the Waste Shark products: the WasteShark, the Great WasteShark and the ChemShark.

Check out their website https://www.ranmarine.io/ for more info and videos!

Idénergie River Turbine

Combining Quebec’s expertise in hydroelectricity, aluminum and renewable energy, Idénergie has successfully developed the first solution to easily generate electricity from the natural flow of a river. This innovation will allow people to generate electricity from nearby rivers, 24 hours a day.

Idénergie’s river turbine has an embedded smart converter that allows the conversion of the energy harnessed from the water current into electricity. The built-in smart converter includes many additional features including a self-starting turbine, continuous power optimization, remote monitoring capabilities, an emergency brake and many more to come.

Mostly made of noble metals such as aluminium and other environmentally friendly components, the turbine is the greenest amongst all available renewable energy products. These material do not react to the environment and are easily recyclable ensuring a substantial end of life value. In addition, the river turbine does not require a permanent structure reducing its impact on aquatic fauna.

By taking into account numerous studies estimating the interactions of the turbines with the ecosystems, Idénergie designed its product in order for it to have minimal impact on the aquatic fauna and its housing environment. Studies carried out by the Alden laboratories, an american entity, have proven that the Darrieus Turbines, used by Idenergie, represent no harm to the river’s ecosystem. In fact, extracting energy from a fluid tend to slow it down, resulting in faster velocity on the side of the turbine thus floating objects and debris, as well as fish, tend to naturally avoid the turbine resulting in 98% survival rate.

A society based on a green economy is Idénergie’s dream. Fully aware of the need to adapt to the threat of climate change, they aim to make a positive difference by encouraging every individual, homeowner or community to use renewable energy and become energy-independent.

Check out their website http://idenergie.ca/en/ to see how this renewable-energy hardware is accessible and discover how yes, it can be done.

First Solar-powered Train

The world’s first solar-powered train is here!

India’s first solar-powered trains has begun service, running a 12.5-mile route from Delhi’s Safdarjung station to Farukh Nagar in the country’s north. The diesel-electric hybrid train has six coach cars with solar panels embedded in their roofs. The panels feed a battery that can power the train for up to 72 hours. Roughly 50 solar-harvesting coaches are set to be launched in the next several days, running primarily along commuter routes.

The new trains are a part of Indian Railways’s plan to establish an energy-generation capacity of 1 gigawatt of solar and 130 megawatts of wind power in the next five years. The state-owned company has been using train-mounted solar panels since 2015 to power interior lights and air conditioning, but their newest train is the first in the world to use solar power.

India isn’t the only country exploring solar-powered trains. A research team at the Imperial College London is embarking on a similar quest to take trains off-grid and power them with solar energy. However, the UK project is looking to track-side solar panels, not ones directly mounted to the trains themselves.

Visit the source article with a video as well on curbed.com

UN Sustainable Development Goals

The Sustainable Development Goals (SDGs), officially known as Transforming our world: the 2030 Agenda for Sustainable Development is a set of 17 “Global Goals” with 169 targets between them.

To read more about each of the SDGs visit this link: http://www.un.org/sustainabledevelopment/sustainable-development-goals/

Wave Star: Kinetic Wave Power

Meet “Wave Star” of Denmark. It is a facility designed to convert kinetic wave power into electricity.

Wave Star is equipped with kinetic-energy harvesters called “floats.” The floats move up and down with the kinetic motion of the waves. The motion of the floats is transferred via hydraulics to rotate power generators. Their facility enables continuous energy production and a smooth output.

The full scale device will be equipped 20 floats of 10 m (33 ft) in diameter. Each power station will be able to produce 6 megawatts of energy, a single machine providing enough energy for roughly 4000 homes.

In the event of a storm, the floats can be lifted to a safe position. The facility could also be upgraded to utilize wind and solar power. The power stations are planned to hit the market this year!

Check out this video for more information!

Thanks to @SeedsofLove.Life for the share! <3

#ActOnClimate

Today at the LA State Historic Park #ActOnClimate hosted a beautiful rally and round-dance for Climate Justice.

The mission: “Together, we will rally for the steps we know are necessary to deliver on the goals of Paris: moving to 100% renewable energy, stopping new fossil fuel projects, divesting from coal, oil and gas companies, and more.”

Among the great speakers who came before the crowd included: Jack Eidt, Co-Founder of SoCal 350 Climate Action; Lydia Ponce, Co-Director of American Indian Movement Southern California; Paul Koretz, Council Member of City of Los Angeles; Martha Dina Arguello, Executive Director of Physicians for Social Responsibility and Matt Pakucko, Co-Founder of Save Porter Ranch.

Check out 350 to get involved in events in your local community! (https://350.org)

 

24 Hour Solar Thermal Plants

 

The Chilean government recently gave the go-ahead on a massive solar thermal plant that is expected to produce electricity 24 hours a day, seven days a week—a considerable feat for a plant that depends solely on solar energy. The plant, proposed for a site in Chile’s Tamarugal province, would consist of three 150 megawatt solar thermal towers, which become heated as mirrors placed around each tower reflect sunlight onto it.

That heat is transferred to molten salt, which circulates through the plant during the day and is stored in tanks at night. The salt, a mixture of sodium nitrate and potassium nitrate that’s kept at a balmy 1,050 degrees Fahrenheit (566 degrees Celsius), is used as a “heat transfer fluid.” As energy is needed, the salt can be dispatched to a heat exchanger, where it will lend its heat to water to create a super-heated steam. That steam is used to move a traditional steam turbine to create electricity.

The molten salt generates high quality super-heated steam to drive a standard steam turbine at maximum efficiency and generate reliable non-intermittent electricity during peak demand hours.

SolarReserve, the US-based company that proposed this project, has also proposed two others—a 260 MW, 24-hour plant near the city of Copiapó in the Atacama Region of Chile, as well as a 390 MW, 24-hour plant in the Antofagasta Region. Mary Grikas, a SolarReserve spokesperson, told Ars via e-mail that Copiapó is shovel-ready, and now Tamarugal is, too, with the Chilean government’s recent approval, which assessed the site for environmental impact. The plant in Antofagasta is still waiting on permitting approval.

Visit the source article for more info and a video!