Wave Star: Kinetic Wave Power

Meet “Wave Star” of Denmark. It is a facility designed to convert kinetic wave power into electricity.

Wave Star is equipped with kinetic-energy harvesters called “floats.” The floats move up and down with the kinetic motion of the waves. The motion of the floats is transferred via hydraulics to rotate power generators. Their facility enables continuous energy production and a smooth output.

The full scale device will be equipped 20 floats of 10 m (33 ft) in diameter. Each power station will be able to produce 6 megawatts of energy, a single machine providing enough energy for roughly 4000 homes.

In the event of a storm, the floats can be lifted to a safe position. The facility could also be upgraded to utilize wind and solar power. The power stations are planned to hit the market this year!

Check out this video for more information!

Thanks to @SeedsofLove.Life for the share! <3

#ActOnClimate

Today at the LA State Historic Park #ActOnClimate hosted a beautiful rally and round-dance for Climate Justice.

The mission: “Together, we will rally for the steps we know are necessary to deliver on the goals of Paris: moving to 100% renewable energy, stopping new fossil fuel projects, divesting from coal, oil and gas companies, and more.”

Among the great speakers who came before the crowd included: Jack Eidt, Co-Founder of SoCal 350 Climate Action; Lydia Ponce, Co-Director of American Indian Movement Southern California; Paul Koretz, Council Member of City of Los Angeles; Martha Dina Arguello, Executive Director of Physicians for Social Responsibility and Matt Pakucko, Co-Founder of Save Porter Ranch.

Check out 350 to get involved in events in your local community! (https://350.org)

 

24 Hour Solar Thermal Plants

 

The Chilean government recently gave the go-ahead on a massive solar thermal plant that is expected to produce electricity 24 hours a day, seven days a week—a considerable feat for a plant that depends solely on solar energy. The plant, proposed for a site in Chile’s Tamarugal province, would consist of three 150 megawatt solar thermal towers, which become heated as mirrors placed around each tower reflect sunlight onto it.

That heat is transferred to molten salt, which circulates through the plant during the day and is stored in tanks at night. The salt, a mixture of sodium nitrate and potassium nitrate that’s kept at a balmy 1,050 degrees Fahrenheit (566 degrees Celsius), is used as a “heat transfer fluid.” As energy is needed, the salt can be dispatched to a heat exchanger, where it will lend its heat to water to create a super-heated steam. That steam is used to move a traditional steam turbine to create electricity.

The molten salt generates high quality super-heated steam to drive a standard steam turbine at maximum efficiency and generate reliable non-intermittent electricity during peak demand hours.

SolarReserve, the US-based company that proposed this project, has also proposed two others—a 260 MW, 24-hour plant near the city of Copiapó in the Atacama Region of Chile, as well as a 390 MW, 24-hour plant in the Antofagasta Region. Mary Grikas, a SolarReserve spokesperson, told Ars via e-mail that Copiapó is shovel-ready, and now Tamarugal is, too, with the Chilean government’s recent approval, which assessed the site for environmental impact. The plant in Antofagasta is still waiting on permitting approval.

Visit the source article for more info and a video!

100 Percent Green California

California’s Senate leader wants the Golden State to shift to 100 percent renewable electricity by 2045, pushing it to lead the country in grabbing that green power goal.

Environmentalists are cheering California Senate President Pro Tempore Kevin de León’s (D) plan to double, and accelerate, the state’s current renewables mandate of 50 percent by 2050. Oscar-winning actor Leonardo DiCaprio even tweeted his thanks to de León among his 17 million followers.

The nation’s most populous state switching to fully renewable electricity sounds idealistic. But several experts said it can be done — with a lot depending on definitions, technological advancements and acceptable price tags.

“2045 is a long way away,” said Severin Borenstein, economics professor at the University of California, Berkeley’s Haas School of Business. “A lot could happen between now and 2045.”

Energy storage through batteries “could get a lot cheaper. That could make the goal much more attainable and much more cost-effective,” he added. Wind and solar energy already are close in price to natural gas, he said. “If you could actually store the power cost-effectively, then you could make it work much more effectively.”

Others warned major expenses would ensue. Large-scale solar and wind projects often go in deserts or other open areas, requiring added infrastructure to move the power to cities, said Evan Birenbaum, who led the environmental strategies program at Los Angeles-area utility Southern California Edison Co. before leaving in 2014. He now heads Chai Energy, which focuses on reducing household energy consumption.

“You would need to build new transmission lines to support the incoming [renewable] power,” Birenbaum said. “Old power lines might not be able to support it.”

Utility substations also likely would need upgrades, he said, adding, “You’re talking about many billions of dollars that have to be invested in that new renewable energy future. It’s the ratepayer who will have to pay for that.”

Borenstein said that calculating how much it will cost nearly 30 years from now is “nearly impossible to answer. … Imagine going back 30 years,” when the internet-connected cellphones used now didn’t exist.

“It’s very hard to predict technology 30 years in advance,” he added.

FFT: Although goals and estimates for 100% renewable energy may not be accurate to the year, the challenge gives us perspective as we progress towards the goal. Who knows, maybe we’ll even beat it.

( Visit the full article at the Scientific America )

https://www.scientificamerican.com/article/can-california-go-100-percent-green/

 

Foldable Solar Panels

We can now fold up solar panels that are nearly unbreakable and take them with us anywhere.

Instead of one solid sheet, these highly portable panels are made from a pliable network of glitter-sized solar cells.

A typical solar panel—more than five feet long and encased in glass—isn’t exactly portable. But a new type of solar technology, miniaturized so that each cell is the size of a piece of glitter, could be used anywhere.

The tiny cells are made from high-efficiency silicon, like standard solar panels. But the new form means that they’re not only small but flexible, and can be folded up for transportation, incorporated into clothing, or easily used in electronics.

Conventional solar panels “are brittle because they’re crystalline,” Murat Okandan, CEO of mPower Technology, the startup making the new technology, tells Co.Exist. “If you bend or flex them, at some point they’ll just break and shatter. By making our cells small and then interconnecting them we’re able to make them almost unbreakable.”

Visit the source link for more details!

The World’s First Solar Road

In a small northern town in France a road has opened which is paved with solar cells. The goal is to see if the highway can power the town, which has 3,400 residents. On the other hand, it still wasn’t cheap for them to build it. In order to fashion a single 1 kilometer lane it cost around 5 million euro. It is also not the most energy efficient way to harness solar energy because the panels are flat on the ground and not optimally oriented towards the sun throughout the day. Nevertheless, it is a way to generate clean energy from existing infrastructure. Its been said that the government hopes to expand the project to other roadways as well.

With advent of more effective solar cells we may see the price drop per kilometer of pavement bit by bit!

(Visit the Source link here!)

Solar Wheelchair

A team of students and faculty from the University of Virginia School of Engineering created a prototype design of a solar powered wheelchair with retractable panels inspired by the idea from a man with cerebral palsy from Turkey. Their goal was to create a prototype of a solar powered wheelchair with retractable panels for individuals with lower extremity or mobility disabilities, spinal cord injury, or cerebral palsy. The Solar Powered Team (SPT) created the prototype using a Shoprider 6Runner wheelchair. They built a structured frame around the base of the wheelchair to hold the solar panels. Three solar panels were attached to a convertible-like structure which rotates back behind the wheelchair.

(Visit the Source link to find out more info!)

CleanEarthFuture does not produce, distribute or sell any of the products listed on this website, see the source link above to find out more for interested buyers.

 

Kirigami-inspired Solar Cells

Researchers at the University of Michigan have developed solar cells that are lighter than ever before, modeled after “kirigami,” the ancient Japanese art of paper cutting.

A team of engineers and an artist developed an array of small solar cells that can tilt within a larger panel, keeping their surfaces more perpendicular to the sun’s rays.

“The beauty of our design is, from the standpoint of the person who’s putting this panel up, nothing would really change,” said Max Shtein, associate professor of materials science and engineering. “But inside, it would be doing something remarkable on a tiny scale: the solar cell would split into tiny segments that would follow the position of the sun in unison.”

(Source link: University of Michigan)

Beta.ray: The Spherical Sun Power Generator

(Image Source: alternative-energy-news.info )

German Architect Andre Broessel believes he has a solution that can “squeeze more juice out of the sun”, even during the night hours and in low-light regions. His company Rawlemon has created a spherical sun power generator prototype called the beta.ray. His technology will combine spherical geometry principles with a dual axis tracking system, allowing twice the yield of a conventional solar panel in a much smaller surface area. The futuristic design is fully rotational and is suitable for inclined surfaces, walls of buildings, and anywhere with access to the sky. It can even be used as an electric car charging station.

“The beta.ray comes with a hybrid collector to convert daily electricity and thermal energy at the same time. While reducing the silicon cell area to 25% with the equivalent power output by using an ultra transmission Ball Lens point focusing concentrator, it operates at efficiency levels of nearly 57% in hybrid mode. At nighttime the Ball Lens can transform into a high-power lamp to illuminate your location, simply by using a few LED’s. The station is designed for off grid conditions as well as to supplement buildings’ consumption of electricity and thermal circuits like hot water.”

(Visit the source for more information and videos: alternative-energy-news.info )

Powur

“To change things, don’t try and fight the existing reality, build a new model that makes the old model obsolete.” – Buckminster Fuller

Now that solar energy has  become comparable if not cheaper than other natural resources we are seeing the emergence of new disruptive and decentralizing organizations such as Powur.

Powur, founded by Jonathan Budd, is a company that offers the opportunity to help accelerate the adoption of solar energy worldwide and build a life-changing part or full time income.

In the last 5 years, solar costs have plummeted over 80 percent. Charles Thompson (Powur Executive Advisor) states that there is now real competition in the monopoly utilities model. Powur is now able to sell clean energy to homeowners that is cheaper than their utilities and is also something they own and control from their own home.

If over a million homeowners in the United States have switched to solar already and the cost is continuing to drop for production and installation, just imagine how  many homes will have switched to solar in the next 5 years.

For more information and a video on Powur visit their page here.

A thanks to Ishmael Brassard as well for coffee! You can contact him with questions as well.