Floating Solar Farms

Millions of marine floating islands, each as large as a football field and powered by sunlight, could harvest carbon dioxide and produce enough fuel to power the world’s planes, ships, trains and lorries. These solar methanol farms, proposed by scientists from Switzerland and Norway, could even eliminate all global fossil fuel emissions.

Solar panels covering the 100m-diameter islands would provide energy for combining carbon dioxide and hydrogen into methanol – a compound that can either be used directly as a fuel or serve as a feedstock for petrochemical products. A chemical plant housed in a moored ship would provide the ingredients for this reaction: hydrogen from water splitting and carbon dioxide harvested from seawater. The area underneath the islands could even be used for fish farming.

A cluster of 70 islands could produce 1.75 tonnes of methanol per hour, the team calculates. To compensate for emissions from the long-haul transport, 170,000 such clusters would be needed. They could be placed along shorelines near the equator, in particular Indonesia, northern Australia and Brazil – areas that have lots of sunlight, small waves and few hurricanes. If 1.5% of the world’s oceans was used for solar methanol farms, they could offset global fossil fuel emissions altogether.

This vision, however, is not without its challenges. Electrolysing seawater creates unwanted chlorine, so the researchers suggest desalinating the water before use. Carbon dioxide can be harvested from seawater – its concentration here is 125 times higher than in air – but it requires heating or acidification. Electrodialysis, which effectively acidifies one part of a solution, could be a practical extraction method. Moreover, to be economically viable, each island cluster can’t cost more than $90 million (£70 million). At that rate it would be projected to cost $990,000,000,000,000 (nearly 1 quadrillion dollars).

The most challenging part, however, might be the catalytic methanol production. Current copper–zinc–aluminium catalysts require high pressures and temperatures. But if temperatures get too high, hydrogen and carbon dioxide can react to form unwanted carbon monoxide. Microstructured reactors and more selective nickel–gallium catalysts might alleviate these problems, but they still need to be tried and tested.

A lot of questions remain, such as whether these technologies could be combined in the way the scientists suggest, and what the best practical design for these facilities might be.


B D Patterson et al, Proc. Natl. Acad. Sci. USA, 2019, DOI: 10.1073/pnas.1902335116

Visit original article here: https://www.chemistryworld.com/news/11-million-floating-solar-farms-could-eliminate-carbon-emissions-from-transport-/3010580.article

Wendy Schmidt Ocean Health XPRIZE


The last time the ocean was as acidic as it is now was 50 million years ago and the change occurred over millennia, not over decades.  We now know that the oceans cannot take infinite abuse.

The Wendy Schmidt Ocean Health XPRIZE is a 2 year competition worth $2 million dollars for team to create radical breakthroughs in measurement technology, namely ocean acidification (pH levels). The point of the competition is to accurately measure acidification for the first time. This alerts people to the fact that we’ve got a problem that is so important that someone is willing to put up private resources as a reward. One of the goals of this prize is to bring more instruments to the problem. There has been an ongoing dearth of data on the state of the health of the oceans. This is an opportunity to start fresh with new tools to share with the public what is really going on.

Measuring the pH in the oceans efficiently and effectively is no easy task. It isn’t only a challenge of accurate measurement but also the depth with which the sensors are able to sink and still perform.

Check out the source link at xprize.org for a video and to find out which team won the prize!

The ocean is critical for the planet and all living species. If competitions like this bring passionate endeavoring people together to make leaps, then what an amazing thing it would be for more such innovation-driven events to emerge.