Idénergie River Turbine

Combining Quebec’s expertise in hydroelectricity, aluminum and renewable energy, Idénergie has successfully developed the first solution to easily generate electricity from the natural flow of a river. This innovation will allow people to generate electricity from nearby rivers, 24 hours a day.

Idénergie’s river turbine has an embedded smart converter that allows the conversion of the energy harnessed from the water current into electricity. The built-in smart converter includes many additional features including a self-starting turbine, continuous power optimization, remote monitoring capabilities, an emergency brake and many more to come.

Mostly made of noble metals such as aluminium and other environmentally friendly components, the turbine is the greenest amongst all available renewable energy products. These material do not react to the environment and are easily recyclable ensuring a substantial end of life value. In addition, the river turbine does not require a permanent structure reducing its impact on aquatic fauna.

By taking into account numerous studies estimating the interactions of the turbines with the ecosystems, Idénergie designed its product in order for it to have minimal impact on the aquatic fauna and its housing environment. Studies carried out by the Alden laboratories, an american entity, have proven that the Darrieus Turbines, used by Idenergie, represent no harm to the river’s ecosystem. In fact, extracting energy from a fluid tend to slow it down, resulting in faster velocity on the side of the turbine thus floating objects and debris, as well as fish, tend to naturally avoid the turbine resulting in 98% survival rate.

A society based on a green economy is Idénergie’s dream. Fully aware of the need to adapt to the threat of climate change, they aim to make a positive difference by encouraging every individual, homeowner or community to use renewable energy and become energy-independent.

Check out their website http://idenergie.ca/en/ to see how this renewable-energy hardware is accessible and discover how yes, it can be done.

TraffEnerate

“Just be you and pave the way to change” says 13-year-old inventor Laalitya Acharya who hopes to revolutionize energy in developing countries by using vehicular motion to generate and harness clean and affordable energy.

Acharya’s invention “TraffEnerate” came about after she started researching cheap, easily renewable resources of energy, and came across a device she calls a piezo. She explains when stress is applied to a piezo, it generates electricity. She wanted to make it easy to utilize piezos, so she designed TraffEnerate to obtain power when cars drive over the devices. Her prototype incorporates 11 piezo sensors and a 3D-printed block so stress will be applied to all 11 piezos even if a car just barely passes over the corner of the prototype.

Acharya said, “I wanted to change the world, that simple. On my family’s yearly trip to India, I saw children who have no power in their homes, huddling near dangerous fires. I wanted to change their position in life, to make it better by creating clean energy and electricity.”

CEF FFT: Imagine what a difference TraffEnerate could provide for people around the world living with an environment congested with vehicular traffic!

For more info visit this link on inhabitat.

Thanks again to Michelle for the share! =)

#ActOnClimate

Today at the LA State Historic Park #ActOnClimate hosted a beautiful rally and round-dance for Climate Justice.

The mission: “Together, we will rally for the steps we know are necessary to deliver on the goals of Paris: moving to 100% renewable energy, stopping new fossil fuel projects, divesting from coal, oil and gas companies, and more.”

Among the great speakers who came before the crowd included: Jack Eidt, Co-Founder of SoCal 350 Climate Action; Lydia Ponce, Co-Director of American Indian Movement Southern California; Paul Koretz, Council Member of City of Los Angeles; Martha Dina Arguello, Executive Director of Physicians for Social Responsibility and Matt Pakucko, Co-Founder of Save Porter Ranch.

Check out 350 to get involved in events in your local community! (https://350.org)

 

Zero-Emission Fossil Fuel Power

(photo credit: CHICAGO BRIDGE & IRON)

This is NET Power’s prototype plant near Houston, Texas. It is testing an emission-free technology designed to compete with conventional fossil power.

Zero-emission fossil fuel power sounds like an oxymoron. But when that 25-megawatt demonstration plant is fired up later this year, it will burn natural gas in pure oxygen. The result: a stream of nearly pure CO2, which can be piped away and stored underground or blasted into depleted oil reservoirs to free more oil, a process called enhanced oil recovery (EOR). Either way, the CO2 will be sequestered from the atmosphere and the climate.

That has long been the hope for carbon capture and storage (CCS), a strategy that climate experts say will be necessary if the world is to make any headway in limiting climate change. But CCS systems bolted to conventional fossil fuel plants have struggled to take off because CO2 makes up only a small fraction of their exhaust. Capturing it saps up to 30% of a power plant’s energy and drives up the cost of electricity.

In contrast, NET Power, the startup backing the new plant, says it expects to produce emission-free power at about $0.06 per kilowatt-hour. That’s about the same cost as power from a state-of-the-art natural gas-fired plant—and cheaper than most renewable energy. The key to its efficiency is a new thermodynamic cycle that swaps CO2 for the steam that drives turbines in conventional plants. Invented by an unlikely trio—a retired British engineer and a pair of technology geeks who had tired of their day jobs—the scheme may soon get a bigger test. If the prototype lives up to hopes, NET Power says, it will forge ahead with a full-scale, 300-megawatt power plant—enough to power more than 200,000 homes—which could open in 2021 at a cost of about $300 million. Both the company and CCS experts hope that the technology will then proliferate. “This is a game-changer if they achieve 100% of their goals,” says John Thompson, a carbon capture expert at the Clean Air Task Force, an environmental nonprofit with an office in Carbondale, Illinois.

Even if NET Power’s technology works as advertised, not everyone will be a fan. Lukas Ross, who directs the climate and energy campaign at Friends of the Earth in Washington, D.C., notes that the natural gas that powers the plant comes from hydraulic fracturing, or “fracking,” and other potentially destructive practices. And providing a steady supply of high-pressure gas for EOR, he adds, will only perpetuate a reliance on fossil fuels. Ross argues that money would be better spent on encouraging broad deployment of renewable energy sources, such as solar and wind power.

Yet oddly enough, NET Power could help smooth the way for renewables to expand. The renewable portfolio standards in many countries and U.S. states require solar, wind, and other carbon-free sources to produce an increasing proportion of the electric power supply. But those sources are intermittent: The power comes only when the sun is shining and the wind is blowing. Nuclear and fossil fuel sources provide “base load” power that fills the gaps when renewables aren’t available. Conventional natural gas power plants, in particular, are viewed as a renewable-friendly technology because they can be ramped up and down quickly depending on the supply of renewable power.

CEF FFT: Although this is not an ideal solution, perhaps this is a step in the right direction. Who knows what this new Allam Cycle could inspire in other renewables.

Visit source article on Sciencemag.org for more information and diagrams!